
Vanarase & Tuchez 1

Shreyyas Vanarase

Christian Tuchez

CX 4230 Computer Simulation

Prof. Vuduc

Mini Project 3: GT Evacuation Simulation

Part A: Conceptual Model

Introduction

Agent based models and queuing models can be used to simulate interesting scenarios. The

purpose of this project is to develop and test an evacuation plan for the individuals at Georgia

Tech. To do this, we must develop and use a discrete event simulator based on a queuing

network conceptual model. As one can imagine, in an emergency situation, unless controlled,

individuals will try to leave all at once resulting in severe traffic along the roads to the highway.

We assume that individuals leave from Georgia Tech’s West campus and exit the campus by

entering the highway through three main routes: North Avenue, Fifth Street, and Tenth Street.

The simulation is stochastic, meaning that randomness will be utilized to simulate unpredictable

elements of the system such as the number of vehicles required to evacuate. In addition, select

intersections within the Georgia Tech road system have a police officer present who will direct

traffic according to a set of predefined rules. In the following sections, we present our conceptual

model for this simulation and identify the high level software architecture of the application. We

will also provide highlights of our software implementation, analyze the biasness our random

number generator, and provide a bound for the amount of time required to evacuate campus.

Conceptual Model

This project runs a full agent body simulation of vehicles evacuating the GaTech campus during

an emergency. The conceptual model of this simulation combines agent-based models and

queuing models. In the context of the agent based model, our agents are called vehicles, the

smallest unit of our simulation. Vehicles represent the individuals trying to leave GaTech and are

initially located in the parking lots of West campus. In the context of the queuing model, parking

lots and intersections are servers and roads are queues. Vehicles run on objects called Roads.

Each road knows its direction and the maximum number of vehicles that can be situated on a

road at a given time. Roads themselves are connected by objects called intersections.

Intersections handle how vehicles move from one road to the next.

When the simulation begins, vehicles will flow out of the parking lots and enter the queue. Each

vehicle will move at the same speed and will only move if there is no vehicle stopped in front of

it. Upon reaching an intersection without a police officer, a vehicle will move in FCFS (first

Come First Served) fashion. That is, if there is no police officer present, the vehicle that arrived

at the intersection the earliest will be the first to move forward. If there is a police officer present

then the vehicle will obey the rules imposed by the officer. The police officer checks if there are

three empty spots on a road and if there are three cars at the front of another road in an

intersection attempting to leave campus. If these conditions are met then the officer moves three

cars at a time from one road to another. If there are less than three cars or spots on either the

Vanarase & Tuchez 2

Figure 1: Simplified Georgia Tech Road System

source road or destination road, respectively, then the usual FCFS behavior takes place. Once the

vehicles have crossed the interstate they exit the simulation.

Stochastics

This project utilized drnglib to obtain access to Intel’s Digital Random Number Generator

(Beccario 2013). Intel’s random number generator retrieves cryptographically secure random

numbers directly from the CPU using the rdrand instruction. Each value is calculated based on

the thermal entropy of the silicon within the internal hardware (Mechalas 2014). This library

allowed us to stochastically determine the number of vehicles in each parking lot. For each

parking lot, upper and lower bounds limit the maximum and minimum number of cars generated,

respectively.

Map

Figure 1 shows the Georgia Tech road system we have used in our simulation. This map has

been coarsened by removing the extraneous geographical obstacles to allow us to better run

experiments and perform analyses. To provide some intuition for the functionality of the map,

we discuss its key features below.

Initially, vehicles are

created by the car

maker and are stored

within queues inside

of the parking lots.

The four parking lots

in our simulation are

represented by the

four blue squares on

the map. Upon leaving

the parking lot,

vehicles will move

toward one of the

three exits along one-

way roads. Each road

has a maximum

capacity proportional

 to its length on the map.

If a street connecting

a parking lot to the road

system is fully occupied then the next

vehicle in queue to leave the parking lot will wait until an empty spot has appeared on the road

and then will move onto the road. Cars move along the roads until they reach intersections,

designated by the red circles on the map. The intersection will turn green to notify that a vehicle

has crossed from one road to the next. If a police is present at an intersection, the intersection

will light up blue to notify a police has directed vehicles from one road to another. When

vehicles reach the exit, the red squares underneath the exit signs will light up green to notify that

a vehicle has exited. These functionalities allow a user to visualize vehicle movement. Note that

on this map, intersections are checked one by one to see if a vehicle has passed through it or not.

As a result, multiple intersections will not light up at the same time.

Vanarase & Tuchez 3

Figure 3: GaTech Evacuation Simulation GUI

Part B: Software Architecture and Implementation Highlights

Software Architecture

The simulation has been developed

in an object oriented framework

through the Java programming

language. Before delving into the

class structure, Figure 2 below

presents a high level software

architecture. Our internal software

determines vehicle functionality and

road/intersection functionality.

Cameron Beccario’s DRNG library

complements our software by

providing access to Intel’s DRNG

(Becarrio 2013). By using this

library, we can simulate the behavior

of a random number of cars that

evacuate the campus. We integrated all

these features into our Swing-based GUI

as shown in Figure 3 to the right.

Map UX

DRNG Library
Interacts With

Queuing Logic

Agent Logic

Integrated Into

Internal Software Open Source Software

Figure 2: Software Architecture Diagram

Vanarase & Tuchez 4

Figure 3: Software Implementation Highlights

Software Implementation Highlights

Figure 3 below depicts the important classes in our code and highlights the relevant attributes

and methods that drive the main functionality of the simulation.

Class Description Attributes Methods

Simulation Driver

The main driver of the simulation. It

generates the map network (roads,

intersections, and exits) and runs the

simulation for a set number of

iterations.

NUMBER_OF_ITERATIONS: The number

of iterations to run
main(): Runs the simulation

Vehicle
The individual vehicles that travel the

roads.

carID: Unique identifier for each vehicle.

timeStamp: Distinguishes arrival into the

queues

Getters/Setters

Road
The physical representation of the

queue.

numVehiclesAllowed: Maximum number

of vehicles allowed on the queue.

direction: Specifies in which direction the

road traffic moves.

roadName: Unique identifier for each

road.

addVehicle(): Adds a vehicle to a

road.

moveCarsForward(): Moves the

vehicles on the road forward by one

location.

Intersection

The server that moves cars between

roads.

hasPoliceOfficer: States whether or not

the intersection has a police officer.

travelable: An array of roads a vehicle

can drive into at an intersection based on

direction.

updateQueues(): Contains logic to

check if a vehicle should move from

one road to another.

moveVehicleBetweenRoads(): Moves

a single vehicle from a source road

to a destination road.

moveThreeVehiclesBetweenRoads():

Moves three vehicles between a

source road and a destination road

if a police officer is present.

MegaParkingLot
A large parking lot connected to three

roads.

road5WaitingQueue: An internal queue

of vehicles waiting to exit the parking lot

to road 5.

updateRoadQueue(): Vehicle exits

the parking lot onto the road.

FunSizedParkingLot
A small parking lot connected to a

single road.

roadWaitingQueue: An internal queue of

vehicles waiting to exit the parking lot to

some road.

updateRoadQueue(): Vehicle exits

the parking lot onto the road.

Exit The point of exit for vehicles.

road: The road the exit is connected to

(e.g. North Ave, 10th Street, or 5th

Street).

removeVehicle(): Removes the

vehicle from the simulation system

when it enters the exit.

Tesla

The official car maker; it generates cars

and assigns them to parking lots.

UPPERBOUNDS: Largest number of cars

to create for a certain parking lot.

LOWERBOUNDS: Smallest number of

cars to create for a certain parking lot.

makeAndAssignCars(): Makes a

number of vehicles that is

determined by the random number

generator.

assignCars(): Assigns the vehicles

created to the different parking lots.

DRNG

The random number generator;

generates cryptographically secure

random numbers based on thermal

noise in the silicon of the CPU.

digitalRandom: Creates a digital random

number generator

getRandomInt(): Returns a random

integer within an upper and lower

bound.

GeorgiaTechMap The simulation GUI.
intersectionList: List of intersections

exitList: List of exits

start(): Begins the simulation.

initialize(): Makes the panel that

contains the GaTech Map GUI

ImagePanel

The map resides on this panel; handles

drawing the map and changing the

colors of intersections/exits during

simulation state change.

intersectionList: List of intersections

exitList: List of exits

paintComponent(): Updates the GUI

to represent the latest change in

simulation state.

Vanarase & Tuchez 5

Figure 4: Chi Square Analysis

0

5

10

15

20

25

30

35

40

45

50

10 30 50

Chi Square

Degrees of Freedom

DRNG Chi Square Measurement of Bias

Observed

Theoretical

(1.1)

Figure 4: DRNG Chi Square Measurement of Bias

Figure 5: Analysis of 𝜒2

Part C: Analysis and Conclusions

Chi Squared Data Analysis

As mentioned before, the purpose of this simulation is to model the behavior of individuals

evacuating Georgia Tech. For this simulation since we have stochastically determined the

number of vehicles that leave campus during the evacuation, we should first analyze our random

number generator actually provides random values. By varying the number of cars created in our

simulation, evacuation prevention analysts will be better knowledgeable about the time required

to exit campus during an emergency in general cases. This leads us into our second point of

analysis: to provide an estimate for the amount of time required to evacuate campus.

We begin by analyzing the Intel Digital Random Number Generator (DRNG) used to generate

our random numbers. This generator uses the entropy inherent to the thermodynamic properties

of a processor to generate random numbers. Intel claims this generator creates highly

unpredictable, statistically independent sequences of uniformly distributed integers (Mechalas

2014). We tested the DRNG using the Chi Square test using the formula (1.1) below. We

generated 100 integers with upper bounds of 10, 30, and 50 for a total of 300 integers.

𝜒2 = ∑
(𝑂 − 𝐸)2

𝐸

The results obtained are displayed in Figure 4 and specified in Figure 5 below. As we can see

the values we observed for chi squared are quite close to those of the theoretical chi square. The

theoretical chi squared

values are based on the

degrees of freedom and

the probability there is a

larger value is 50%.

Since each of the

observed values are

close to this expected

value at 50% with

degrees of freedom =

|V| -1, the generator

can be described as

unbiased for each of

these ceiling values.

Since the DRNG is

unbiased, it directly

implies that there is no

bias towards repeating

sequences or integers and

therefore, it’s a good random number generator.

Note that the ceiling values are simply the degrees of freedom.

Degrees of Freedom, V Observed 𝝌𝟐 Theoretical 𝝌𝟐

10 5.2 8.34283

30 27.99 28.3361

50 45 47.3350

Vanarase & Tuchez 6

Figure 6: Confidence Interval Data

Confidence Intervals Analysis

Having analyzed that our random number generator is quite unbiased, let’s consider how long it

will take for the campus to evacuate through our simulation. We gathered data for 4 trials:

1) Number of Vehicles ~ 150, with Police Officer Guidance

2) Number of Vehicles ~ 150, without Police Officer Guidance

3) Number of Vehicles ~ 30, with Police Officer Guidance

4) Number of Vehicles ~ 30, without Police Officer Guidance

Figure 6 below shows us the results for these 4 cases. In the first case, we set our upper and

lower bounds for each of the parking lots so that we generated about 30 vehicles per simulation.

Over 30 trials, we saw that the simulation generated approximately 159 vehicles on average,

each iteration about 172 seconds to complete, and our standard deviation was 20.6 seconds.

Thus, for about 150 vehicles it takes approximately 3 minutes to evacuate the campus. With

some further arithmetic, we can even bound the amount of time required to evacuate campus.

Using a t distribution and a certain confidence level, we calculated an interval to enumerate this

amount of time. Hence, we are 99.9% confident that it will take 150 vehicles between 2.6281 < µ

< 3.0847 minutes to evacuate Georgia Tech campus. Now, this was with the guidance of 6 police

officer placed throughout campus. Without the police officers, we can instantly see the amount

of time to evacuate campus increase by a factor of about 25%. The average time rose to 209

seconds from the 172 seconds. Now, we would be 99.9% confident that it would take 150

vehicles to 3.2979 < µ < 3.6988 minutes to evacuate campus.

Running tests on a smaller number of vehicles displayed the same change. Without police

officers, the amount of time increased by 25% again. Thus, we see through this data that the

amount of time required to evacuate a set number of vehicles is nearly proportional. For

example, increasing the number of vehicles by a factor of 5, also increased the amount of time

required to evacuate by approximately a factor of 5.

Now, in reality there is a much higher number of vehicles that must evacuate GaTech. Since

there are an order of thousands of vehicles, our simulation can only go so far to provide estimates

for the upper bound on the amount of time required to evacuate. Additionally, there are other

factors that have a strong role in this estimate. For example, the accuracy of the map (there may

be roads unspecified in this simulation that are actually available for use in daily life), the use of

double lane roads vs single lane roads and similarly one-way roads vs double way roads, size of

cars (some cars may take up more space than others and so the number of cars allowed on each

road at a time is maximized by the size of each car) can all vary this amount of time.

 Number Of

Vehicles

Amount of

Time (s)

Standard

Deviation

Lower Bound

(min)

Upper Bound

(min)

With Police Officer 158.52 171.39 20.58 2.63 3.08

Without Police Officer 160.61 209.90 18.07 3.30 3.70

With Police Officer 30.23 36.45 10.07 0.50 0.72

Without Police Officer 31.19 45.61 11.18 0.64 0.88

Vanarase & Tuchez 7

However, that is not to say that we cannot use this simulation to provide fruitful insights. One

main point to surely note is that adding police officers to moderate traffic is clearly a better

option than letting individuals always follow the FCFS principle. Based on our data, adding

police officers has significantly reduced the amount of time required to evacuate even for small

instances of number of vehicles on the road.

Conclusion

As we have seen, this simulation provides us the ability to view the behavior of individuals

leaving Georgia Tech campus during an emergency. We understand how the simulation

maintains a sense of randomness through its DRNG and how it provides us with insight into the

amount of time required to evacuate individuals off campus. Through the 𝜒2 test, we showed that

DRNG is quite unbiased towards any value and that it actually does provides unpredictable,

statistically independent sequences of uniformly distributed integers. Finally we provided a

bound for amount of time to evacuate within a 99.9% level of confidence for a set number of

cars. Additionally, regardless of the number of vehicles on the road, placing police officers at the

intersections of high volume traffic will surely decrease the amount of time required to evacuate.

Vanarase & Tuchez 8

Works Cited

Beccario, Cameron. "Cambecc/drnglib." GitHub. 9 Feb. 2013. Web. 1 Mar. 2015.

<https://github.com/cambecc/drnglib>.

Mechalas, John. "Intel® Digital Random Number Generator (DRNG) Software Implementation

Guide." Intel® Digital Random Number Generator (DRNG) Software Implementation

Guide. 15 May 2014. Web. 2 Mar. 2015. <https://software.intel.com/en-us/articles/intel-

digital-random-number-generator-drng-software-implementation-guide>.

